Why is everything ADHD?
Yeah, this has nothing to do with ADHD.
Common core made an effort to teach kids to think about numbers this way and people flipped the fuck out because that wasn’t how they were taught. Still mad about that.
There’s
peoplealiens who would add 9+7 instead of 10+6 or 8+8 in their heads?I do, because 9 plus anything is just a 1 in front of the other digit minus 1.
Weirdly enough, I just thought about using the methods here for the first time in my life earlier today. Weird.
9 plus anything is just a 1 in front of the other digit minus 1
This is also how it works in my head, but isn’t it the same as the other guy was saying, 10+6?
The difference would just be how you think of the process. I sometimes shuffle around the numbers to make math easier, but the shortcut for adding 9s just feels different. Instead of 9+7 = 10 + 6, it’s more like 9+7 = 17-1. It feels less like solving it with math and more like using a cool trick, since you didn’t really use addition to solve the addition problem.
Sort of, same numbers different logic. Its like mixing up the order of operations. You could learn both tricks but it seems redundant if they do the same thing. Like having two of the same hammer.
And it scales with multiplication too.
9*7
is(7-1) and whatever adds to 9
, so 63. This breaks down for larger numbers, but works really well up to9*10
. I don’t know what “common core” teaches for that, but you can’t change the 9 to a 10 for multiplication (well, you could, but you’d need to subtract 7 from the answer).Treating 9s special makes math a lot easier. Doing the “adjust numbers until they’re multiples of 10” works for more, but it’s also more mental effort. 9s show up a lot, so learning tricks to deal with them specifically is nice. I just memorized the rest instead of doing “common core” math to adjust things all the time.
That said, I do the rounding thing for large numbers. If I’m working with lots of digits, I’ll round to some clean multiple of 10 that divides by 3 (or whatever operation I need to do) nicely. For example, my kid and I were doing some mental math in the car converting fractional miles to feet (in this case 2/3 miles to feet). I used yards in a mile (1760) because it’s close to a nice multiple of three (1800), and did the math quickly in my head (1800 - 40 yards -> 6002 yards - 40 yards to ft * 2/3 -> 1200 yards - 120 ft2/3 -> 3600 ft - 80 ft -> 3520 ft). I calculated both parts of the rounding differently to make them divisible cleanly by 3. I don’t know what common core math teaches, but I certainly didn’t learn this in school, I just came up with it by combining a few tricks I learned largely on my own (i.e. if the digits add to 3, it’s divisible by 3) through years of trying to get faster at math drills. If I wasn’t driving, I would have done long division in my head, but I needed to be able to pause at stop signs to check for traffic and whatnot, and just remembering two numbers w/ units is much easier than remembering the current state of long division.
I was very competitive in school like this, wanted to finish things first. I think maybe you make a good point about wanting to solve things faster leading to these types of tricks developing. Sort of puts math competitions in a new light.
My brain did something similar, but maybe weirder.
7 + 3 + 6, rather than 9 + 1 + 6.
Goes to show how little our education system is teaching kids to understand what you’re supposed to be learning.
You are literally responding to a comment about how our education system is now teaching kids to understand the basic fundamentals of mathematics instead of just rote learning methods.
I’m drunk and meant my comment to reflect more on the past rather than the present
The problem with common core math was not that they taught these techniques. It’s that they taught exclusively these techniques. These techniques are born from the meta manipulation of the numbers which comes when you have an understanding of the logic of arithmetic and see the patterns and how they can be manipulated. You need to understand why you can you “borrow” 1 from the 7 or the 9 to the other number and get the same answer, for example. It makes arithmetic easier for those who do it, yes, but only because we understand why you are doing it that way.
When you just teach the meta manipulation, the technique, without the reason, you are teaching a process that has no foundation. The smarter kids may learn to understand the foundational logic from that, but many will only memorize the rules they are taught without that understanding of why and then struggle to build more knowledge without that foundation later.
Math is a subject where each successive lesson is built on the previous lessons. Without being solid on your understanding, it is a house of cards waiting to fall.
To add to this, people come up with math tricks all the time but you then have to check it against the manual method, and often multiple times with different numbers, before you can connect the manual process to the trick for later use.
In my opinion I don’t think you can teach just the trick side of it, if thats what common core is.
When I was tutoring, i had a few elementary-school aged kids. They’d have homework where they had to do the problems three or so different ways, using each of the methods that they were taught (one of which was always the way I was taught when I was their age). I actually feel like I learned a lot from them, as there were some interesting tricks that I didn’t know before helping with the homework. I think that’s a really good way to approach it, because a kid may struggle with some of the methods but generally was able to “get it” with one of them, and which method was “the best” was entirely dependent on the kid. For me, being able to see which methods clicked and which ones didn’t helped me be more effective as a tutor, too, since it showed me a bit more about how their individual little brains were working.
But I agree, if you’re not also at least trying to explain why the different methods get you the same answer, it can lead to problems down the line. Some of them saw the “why” for themselves after enough time working at it, and some needed a bit more external guidance (which, considering they were coming to me for tuturoing, I guess they weren’t getting at school). My argument would be that no one really taught me “why” when I was in school learning The One Way to do math either. I still had to figure out little tricks that worked for me on my own, since my brain is kinda weird. It may not have taken me so long to believe that i’m actually pretty damn good at math if I’d done those kids’ homework when I was their age, as i would have had more tools in the toolbox to draw from.
Yeah, no, the way we were taught was often lacking too. Definitely not advocating for the old school methods as a whole. It was still very prescriptive and the whole “show you work” mentality with a rigid methodology expectation meant that even though I could rapidly do stuff in my head by using these shorthand techniques, I still had to write out the slower longer methods to demonstrate that I was able to. For my ADHD ass, that shit was torture.
I think common core went in the right direction. Teaching shorthand techniques that may not have been naturally apparent to some students probably made doing arithmetic more accessible to some. But I think it was an over correction. They should have been teaching them the basics without the rigidity and prescriptivity, but following that up with giving them useful techniques/tools to make arithmetic smoother and easier for different types of thinkers. Instead, they skipped or breezed over the basics, went straight to the techniques and then maintained that prescriptive expectation of the “show your work” mentality to ensure and enforce the techniques are being followed properly.
I understand why they maintained that show your work mentality to an extent. The teachers need to be able to understand how you arrived at an answer, correct or incorrect, and identify mistakes in logic so that it can be fixed. But the entire point of those techniques is that you understand the underlying logic but find a method of thinking that makes it easier for you and makes sense. As demonstrated in this thread, there’s a number of different shorthand methods, and different preferences for them for every person. Teaching and practicing all these different patterns of meta techniques to add numbers and forcing them to write them out and explain them in weird esoteric ways is the literal opposite of the point of the techniques. I have to imagine it mostly confused their understanding of the basic logic as well.
Yes, i do think the biggest problem is shoving so many different tricks at them at once that it leads to confusion. There was also a bit of frustration from some of my tutees from having to solve the same problems multiple times. Some found it boring and tedious, and some found it confusing and made them less confident in their skills since not all methods they were taught “clicked”.
Let’s make that 9 a 10 because it’s good enough, it’s smart enough, and goshdarnit people like it. Also, I don’t wanna add with a 9. So 10 + 7 would be 17, but we added 1 to the 9 to make it 10 so now we take 1 away, 17 - 1 = 16.
ezpz
9 plus a number? No. 10 plus a number, minus 1. Yis.
I just memorized any addition with 9 adds a 1 in front while reducing the other number by one. Same general step, but there’s no 10 in my head, just 9+7 -> 16. Basically, promote the tens column while demoting the ones column. I think of it more like a mechanical scoreboard (flip one up, flip the other down) than an operation involving a 10.
If it’s anything other than 9, I fall back to rote memorization, unless the number is big, in which case I’ll do the rounding to a multiple/power of 10.
Yeah that’s a more accurate description of what i actually do in my head to. I’m not “adding 10”, because I already would use a short hand method for adding 10 anyway to promoting the tens place or flipping the score card, as you said.
Whatever number is closest to 10 steals enough to make itself 10. Same goes for hundreds, thousands, whatever. Get your round numbers first, add in the others later. All numbers must become 10. In a pinch, a number may become a 5, but if so, it’s really just become a half-10, and it should feel bad about itself that isn’t a full 10 yet.
9 is 3+3+3, 7+3 is 10, 3+3 is 6, 6+10 is 16. I’m also a fucking heathen.
What the fuck
Might as well do:
9 is 1+1+1+1+1+1+1+1+1, 7 is 1+1+1+1+1+1+1 therefore 9+7 is 1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1 which is 16.
That’s pretty much exactly how you first learn to do arithmetic. Break the (whole) numbers down into their smallest (whole) part and count em up. That’s what number lines do, or using colored blocks to visually do the addition, or any number of other techniques you use when you’re first learning arithmetic. I mean, even just knowing 3 + 3 = 6 is memorization, a shortcut form of 1 + 1 + 1 + 1 + 1 + 1 = 6.
lol, it is pretty bizarre I know. I just know 9 breaks into 3+3+3 because it’s a square number, and adding one of those 3s to 7 makes it 10, which is easier to add stuff to, then I just get rid of the remaining 3s by adding them to 6, then 10+6 is a very easy equation to intuitively add, because you just replace the “0” with “6” to get “16” and you’re done.
Okay this is nice and all but how do people do 3974* 438 mentally, without paper? And bigger and some outright freaks seem to do it in an instant
Depends how much neuron density you have in the part of the brain that handles this. It’s mostly about memory, being able to accurately and quickly remember all the little steps you have already done and what the results of those steps were. Then just keep going one digit pair at a time keeping in mind all the results so you can deal with the carry overs.
But the whole reason we can focus on teaching everyone shortcuts for smaller math now is because we do literally always have a calculator on us now. So while it’s still good to know how to do bigger math more efficiently, you’ll never catch up to a calculator anymore. It’s more important that they know the foundational concept well enough to move on to the next step now rather than practicing doing big math faster and faster. Can leave that to the individuals with talent in the area.
Not any great easy way I can think of to do that one but I would attempt to do 400 by 3974 and then add chunks of 438 x 10 or x5 until I got really close and then add individual blocks.
So like 400 by 3974, you can round to 4000 and remove 4 x 26 = 104 after doubling 4000 twice. So we have 4000 to 8000 to 16000 remove 104 is 15896, add zeros is 1,589,600. Forget all other numbers but this one.
We are missing 38 x 3974. We can do the same round and remove trick to add 10 x 3974 by changing it to 10 x 4000 - 10 x 26. We need four of those though, so we can double it and turn from 40000 - 260 to 80000 - 520 and then 160,000 - 1040 or 158,960. Need to remove 2 x 3974 though, so remove 8000 and add 52 so 151,012.
Hopefully ive been able to keep that first number fresh in my head this whole time, which involves repeating it for me, and I’d add 1,589,600 and 151,012. Add 150000 and then 1,012 so 1,739,600 and then 1,740,612.
That all said, I make way more mistakes than a calculator, and I was off by 400 or so on my first run through. Also its really easy to forget big numbers like that for me. I’d say if you gave me ten of these to do mentally I’d get maybe 2 correct.
That’s great but this is juggling numbers in memory and I simply cannot do this reliably. I will have this one current operation and put the other ones into the mental basket so to say and it evaporates and blurs as I calculate the other thing right so I wonder how these folks can do this and really fast. Not that I ever seriously tried other than some rare bored moments so maybe it is simply a matter of training?
Its very impressive though when you give these ppl two big numbers and they say result nearly in an instant
Over time those bigger numbers become more common too. Someone who can mentally do the type of problem I just did and get it right quickly likely have a ton of practice and will know quicker tricks, and be able to simplify it in a way.
Another part is they would be able to recognize a wrong answer more accurately as well. I didnt realize my answer was off by a lot until I put it in a calculator, but someone with more practice might know intuitively they were wrong.
I just don’t consistently do this type of math, I used to be good at it in school but its become mostly irrelevant for me outside impressing someone a slight bit. It is helpful to have the ability to do things manually but it just rarely comes up.
For me:
3974 * 438 -> 4000 * 438 - 26*438 -> 4000 * 438 - 26*440 - 26*2 -> 4000 * 438 - 20*440 - 6*440 - 26*2
And so on, and I’d do some of the intermediate calculations as I go (e.g.
20*440
and6*440
).But that’s only really needed if I need a precise answer. If I can get away with an estimate, I’ll simplify it even more:
4000 * 430 ~= 43 * 4 * 10000 = 86 * 2 + 10000 = 1,720,000
Actual answer:
1,740,612
.4000 * 440
would be easier (I like multiplying 4s), but I know it would overshoot, so I round one up and the other down. Close enough for something like estimating how much a large quantity of something kind of expensive would cost (i.e. if my company gave everyone a hot tub or something).
I explained to a teacher one time this as my method, the get to ten version, and she looked confused as hell like why would anyone do that. She was cool with it though, gave me a whatever works for you kind of response.
Mental arithmetic is all little tricks and shortcuts. If the answer is right then there’s no wrong way to do it, and maths is one of the few places where answers are right or wrong with no damn maybes!
Well, there are certainly wrong ways to arrive at the answer, e.g. calculating 2+2 by multiplying both numbers still gets you 4 but that is the wrong way to get there. That doesn’t apply to any of the methods in the post though.
Unsolved problems do not all fall into binary outcomes. They can be independent of axioms (the set of assumptions used to construct a proof).
I like your funny words, mathemagic man
Hmm, you seem to be completely discounting calculus, where a given problem may have 0, 1, 2, or infinite solutions. Or math involving quantum states.
In math, an answer is either right, wrong, or partially right (but incomplete).
Quantum states is physics, not math.
And mathematically a probabilistic theorem is still a theorem.
Those are quite far from mental arithmetic though
Calculus is generally pretty easy to do mental arithmetic on, especially when talking about real-world situations, like estimating the acceleration of a car or something. Those could have multiple answers, but one won’t apply (i.e. cars are assumed to be going forward, so negative speed/acceleration doesn’t make much sense, unless braking).
Math w/ quantum states is a bit less applicable, but doing some statics in your head for determining how many samples you need for a given confidence in a quantum calculation (essentially just some stats and an integral) could fit as mental math if it’s your job to estimate costs. Quantum capacity is expensive, after all…
Unless you consider probabilities. That’s a very strange field—you can’t objectively verify it.
You can’t objectively verify anything in mathematics. It’s a formal system.
Once you start talking about objective verification, you’re talking about science not math.
It is actually the opposite, since it is purely abstract everything in math is objective. There is literally no subjectivity possible in something that isn’t in the real world.
That’s also all common core is. Instead of teaching the line up method which requires paper and is generally impractical in the real world, they teach ways to do math in your head efficiently.
What is “common core” and what is the “line up method”?
8+8 and 8X2 are literally the exact same thing, why did they feel the need to make that an extra step?
Probably because they were forced to memorize times tables, but not arithmetic so they wanted to show where they are leveraging that memorization from
Has nothing to do with ADHD.
Wouldn’t say nothing to do with.
Many neurodivergent students find themselves in situations where they haven’t fully absorbed the taught material. Many of them end up figuring problems out themselves, with varying degrees of creativity and successNeurotypical students do the same thing. It’s not like every neurotypical will internalize every piece of material they are taught.
Yup, I’m most likely neurotypical (never been diagnosed either way, just never had issues w/ traditional learning), and I generally ignored the teacher and did things my own way. I was always really good at math, so the teacher’s way was usually less efficient for me, so once I understood the operation, I’d create shortcuts.
We’d go over the same material a lot, so I’d usually just do homework while the teacher taught some new way to do the same operation. I’d get marked down for doing it differently from the instructions, but I’d get the answer right.
I would have done 10+6, but that’s effectively the same thing as the OP.
Aside from literally counting, what other way is there to arrive at 16? You either memorize it, batch the numbers into something else you have memorized, or you count.
Am I missing some obvious ‘natural’ way?
Theres more complicated ways for sure, but I think we have identified all the simple ones. Could break it into twos I guess.
For my kids, apparently some kind of number line nonsense, which is counting with extra steps.
I just memorize it. When the numbers get big, I do it like you did. For example, my kid and I were converting miles to feet (bad idea) in the car, and I needed to calculate 2/3 mile to feet. So I took 1760 yards -> 1800 yards, divided by three (600), doubled it (1200), and multiplied by 3 to get feet (3600). Then I handled the 40, but did yards -> feet -> 2/3 (40 yards -> 120 ft -> 80 ft). So the final answer is 3520 ft (3600 - 80). I know the factors of 18, and I know what 2/3 of 12 is, so I was able to do it quickly in my head, despite the imperial system’s best efforts.
So yeah, cleaning up the numbers to make the calculation easier is absolutely the way to go.
As in, visualizing a number line in their heads? Or physically drawing one out?
I could see a visual method being very powerful if it deals in scale. Can you elaborate on that? Or, like try to understand what your kids’ ‘nonsense’ is?
I think my 7yo visualizes the number line in their head when there’s no paper around, but they draw it out in school. I personally don’t understand that method, because I always learned to do it like this:
7372 + 273 =====
And add by columns. With a number line you add by places, so left to right (starting at 7372, jump 2 hundreds, 7 tens, and 3 ones), whereas with the above method, you’d go right to left, carrying as you go. The number line method gets you close to the number faster (so decent for mental estimates), but it requires counting at the end. The column method is harder for mental math, but it’s a lot closer to multiplication, so it’s good to get practice (IMO) with keeping intermediate calculations in your head.
I think it’s nonsense because it doesn’t scale to other types of math very well.
You still haven’t told me what the number line method actually is. I know how to add up the columns bud
Number line is something like this:
100 | 200 | 300 ... | 10 | 20 | 30 ... | 1 | 2 | 3 ==================================================
You write out the numbers that are relevant and hop by those increments. So for 7372 + 273, you’d probably start at 7000, hop 100 x 5 (3 for 372 and 2 for 273), hop 10 x 14 (7 for 72 and 7 for 73), and so on. It’s basically teaching you to count in larger groups.
To multiply, you count by the multiple (so for 7 x 3, you’d jump in groups of 3).
This article seems to explain it. I didn’t learn it that way, so I could be getting it wrong, but it seems you do larger jumps and and the jumps get smaller as you go. I think it’s nonsense, but maybe it helps some kids. I was never a visual/graphical learner though.
So, are you just talking about number lines in general?
I learned how to use those in grade school too. 20+ years ago. But the way you phrased it made me think there was more to it. Calling it nonsense is… shocking.
I guess we used it for an exercise or something a couple times, but never for more than indicating how numbers work. They’ve taken that idea and kind of run with it, instead of leaving it behind once the basics of addition have been mastered. I learned multiplication as just repeated addition, and there’s no reason IMO to get a number line involved because addition should already be mastered.
This is a 2nd grade class, and I expect them to have long since mastered addition. At that point, a number line feels like a crutch more than a useful tool. Sure, use them in kindergarten and first grade to grasp how counting works (and counting by 2s and 10s), but that should honestly be as far as it goes. But they still use it for fractions and larger sums and products.
A mile is 1760 yards, and there are three feet in a yard. Therefore, 1760 feet is 1/3 of a mile, and 2/3s of a mile is 3520 feet.
The imperial system is actually excellent for division and multiplication. All units are very composite, so you usually don’t need to worry about decimals.
Metric would be perfect if 10 wasn’t such a dog shit number to base our counting off of. Sure it works for dividing things in half, but how often do you need to break something down into fifths? Halves, thirds, and quarters are 90% of typical division people do, with tenths being most of the rest since 10 is that only number that our base system actually works with.
Yup. The reason I went with yards was because I knew 1760 was closer to a nice multiple of 3 than 5280 (neither 5200 or 5300 is a multiple of 3; I’d have to go to 5100 or 5400).
But yeah, imperial works pretty well for multiplication and division, it’s just not intuitive for figuring out the next denomination. Why is a mile 1760 yards instead of 1000 or 1200? Why is it 5280 feet instead of 6000? Why is a cup 8 oz instead of 6 (nicer factors) or 10? Why is a pound 16 oz instead of 8 oz like a cup would be (or are pints the “proper” larger unit for an oz)?
The system makes no sense as a tiered system, but it does make calculations a bit cleaner since there’s usually a whole number or reasonable fraction for common divisions. Base 10 sucks for that, but at least it’s intuitive.
I’m also in 10+6 gang, and it’s more universal, as in a decimal system you will always have a 10 or 100 to add up to, and a “pretty” 8+8 is less usual
My mental image is squishing the 7 into the 9 but only 1 is able to be squished in, leaving 6 overflowing
I’d argue memorizing it is the natural way, at least if you work with numbers a lot. Think about how a typist can type a seven letter word faster than a string of seven random characters. Is that not good proof that we have pathways in our brain that short circuit simpler procedural steps?
Yo but hear me out. Because 7 ate(8) 9, 7 + 9 = 7
The second method is very chemistry-like. I do that too naturally
I thought that too, 9 is like a halogen, it wants to resolve to 10 anyway it can like fluorine wants one last electron. So allow the 9 to rip one off of the neighboring numbers and then perform the calculation.
I’ve never really liked the anthropomorphic description of chemical bonding, but maybe it’s actually similar to the addition thing. On the one hand, we can say 9 wants to resolve to 10 and takes a 1, and on the other hand we could say there are a bunch of different ways we could rearrange these numbers but the end result is the same as if we resolve 9 to 10 first. Maybe chemical reactions are similar, so there’s a bunch of configurations that could have happened, but the end result is the same as if we had said fluorine wants that last electron
If your teacher gets mad about breaking an addition problem into easier problems, then that teacher should be fired. Phony tale.
If anything, these are exactly the techniques that “New Math” was supposed to teach. Your brain doesn’t work math the same way as a computer. People who are good at math tend to break the whole thing down into simple pieces like this. New Math was developed by studying what they did and then teaching that to everyone.
I tend to add 9 to things by bumping the tens digit up by one (7 becomes 17) and then subtracting 1 (17 becomes 16).
Most of the arguments against New Math tended to prove the point; our mathematical education was in dire need of fixing.
But they posted in italibold, which makes it 420.69% leejit. pwned.
IT IS ILLEGAL TO WRITE LIES IN ITALLIBOLD.
It took me 3 years to pass HS algebra because the coaches/part-time math teachers didn’t like the way I solved problems. I got the right answers. But the way I got them was wrong apparently.