Trying to prevent bacteria from developing antimicrobial resistance. At these rates in 30 years antimicrobial resistant bacteria are projected to kill more people than cancer.
I’ve been around the AMR space for a while, but only as a collaborator. Have helped do some bacterial assemblies and help find methods of detecting ICE. I’m a bioinformatician so I get to jump onto a bunch of different projects.
AMR is scary and not really in the public knowledge of upcoming issues. I think about it every time my son had an infection while he was very young and hope he didn’t get a resistant strain.
How much of this resistance is down to feeding livestock antibiotics compared to doctors over-prescribing to people, or what is the cause do you know? Is there any way to slow down the rate?
The level of AB use in livestock in various countries is astonishing.
Most european nations have to keep a very strict log of which antibiotics are used, and for what reason.
Meanwhile, until recently India was using Colistin as a growth promoter.
Given the search summary of that one is “an antibiotic medication used as a last-resort treatment for multidrug-resistant Gram-negative infections”, that sounds very bad.
I think there are so many new and great ideas in this space but you have to consider how science is funded. Funding bodies and reviewers want incremental research that is safe. This has led to our current situation.
Phage therapy has been around for so long but is only in the last 10 years gained creditability and treated as a path to take.
Ultimately, antimicrobial resistance is incredibly solvable even at a policy level and definitely across many scientific levels. But it requires more cooperation than farms, pharmacies, hospitals, states and countries can muster.
Trying to prevent bacteria from developing antimicrobial resistance. At these rates in 30 years antimicrobial resistant bacteria are projected to kill more people than cancer.
Clearly you need to figure out how to give antibiotic resistant bacteria cancer.
Uncontrolled dividing of the most dangerous bacterias known to man? What could go wrong?
This?
I’ve been around the AMR space for a while, but only as a collaborator. Have helped do some bacterial assemblies and help find methods of detecting ICE. I’m a bioinformatician so I get to jump onto a bunch of different projects.
AMR is scary and not really in the public knowledge of upcoming issues. I think about it every time my son had an infection while he was very young and hope he didn’t get a resistant strain.
So are there any good news in this respect?
There was a paper back in December about a new class of antibiotics being discovered thanks to the use of Deep Learning.
This looks like a decent writeup about it, the paper itself is not open access
This is very welcome as it has been a long time since the last new class of antibiotics was discovered. Here’s a good paper that talks about the timeline of antibiotics
It’s been a little while since I took the AMR course, so I’ll let the papers speak for themselves instead of trying to quiz myself here on Lemmy.
How much of this resistance is down to feeding livestock antibiotics compared to doctors over-prescribing to people, or what is the cause do you know? Is there any way to slow down the rate?
The level of AB use in livestock in various countries is astonishing.
Most european nations have to keep a very strict log of which antibiotics are used, and for what reason.
Meanwhile, until recently India was using Colistin as a growth promoter.
Given the search summary of that one is “an antibiotic medication used as a last-resort treatment for multidrug-resistant Gram-negative infections”, that sounds very bad.
I saw numbers on this recently. It was something like 80-90% of all antibiotics are given to livestock. So this is a huge contributor.
I think there are so many new and great ideas in this space but you have to consider how science is funded. Funding bodies and reviewers want incremental research that is safe. This has led to our current situation. Phage therapy has been around for so long but is only in the last 10 years gained creditability and treated as a path to take. Ultimately, antimicrobial resistance is incredibly solvable even at a policy level and definitely across many scientific levels. But it requires more cooperation than farms, pharmacies, hospitals, states and countries can muster.
We really need a big push into bacteriophage research I think. Get the bugs all killing each other so we can keep our antibiotics for emergencies.