It’s misunderstanding the question even if unintentionally.
Clearer: Since Pi is infinite and non-repeating, would that mean any finite sequence of non-repeating digits from 0-9 should appear somewhere in Pi in base 10?
They somehow interpreted it as Does any possible string of infinite non-repeating digits contain every possible finite sequence of non repeating digits?
It’s like if I ask “since the dictionary contains every word that means it contains every letter right?” And someone answers, actually you’ll find if you translate it to Japanese and only use kanji it actually doesn’t contain these letters. It fundamentally isn’t what I’m asking, and yes, you can argue I didn’t say IN ENGLISH, but just like the pi question, I feel like it’s pretty intuitive that I wasn’t referring to non English letters in the question.
Since Pi is infinite and non-repeating, would that mean any finite sequence of non-repeating digits from 0-9 should appear somewhere in Pi in base 10?
…and this…
Does any possible string of infinite non-repeating digits contain every possible finite sequence of non repeating digits?
are equivalent statements.
The phrase “since X, would that mean Y” is the same as asking “is X a sufficient condition for Y”. Providing ANY example of X WITHOUT Y is a counter-example which proves X is NOT a sufficient condition.
The 1.010010001… example is literally one that is taught in classes to disprove OPs exact hypothesis. This isn’t a discussion where we’re both offering different perspectives and working towards a truth we don’t both see, thus is a discussion where you’re factually wrong and I’m trying to help you learn why lol.
Is the 1.0010101 just another sequence with similar properties? And this sequence with similar properties just behaves differently than pi.
Others mentioned a zoo and a penguin.
If you say that a zoo will contain a penguin, and then take one that doesn’t, then obviously it will not contain a penguin.
If you take a sequence that only consists of 0 and 1 and it doesn’t contain a 2, then it obviously won’t.
But I find the example confusing to take pi, transform it and then say “yeah, this transformed pi doesn’t have it anymore, so obviously pi doesn’t”
If I take all the 2s out of pi, then it will obviously not contain any 2 anymore, but it will also not be really be pi anymore, but just another sequence of infinite length and non repeating.
So, while it is true that the two properties do not necessarily lead to this behavior. The example of transforming pi to something is more confusing than helping.
The original question was not exactly about pi in base ten. It was about infinite non-repeating numbers. The comment answered the question by providing a counterexample to the proffered claim. It was perfectly good math.
You have switched focus to a different question. And that is fine, but please recognize that you have done so. See other comment threads for more information about pi itself.
It’s misunderstanding the question even if unintentionally.
Clearer: Since Pi is infinite and non-repeating, would that mean any finite sequence of non-repeating digits from 0-9 should appear somewhere in Pi in base 10?
They somehow interpreted it as Does any possible string of infinite non-repeating digits contain every possible finite sequence of non repeating digits?
It’s like if I ask “since the dictionary contains every word that means it contains every letter right?” And someone answers, actually you’ll find if you translate it to Japanese and only use kanji it actually doesn’t contain these letters. It fundamentally isn’t what I’m asking, and yes, you can argue I didn’t say IN ENGLISH, but just like the pi question, I feel like it’s pretty intuitive that I wasn’t referring to non English letters in the question.
In terms of formal logic, this…
…and this…
are equivalent statements.
The phrase “since X, would that mean Y” is the same as asking “is X a sufficient condition for Y”. Providing ANY example of X WITHOUT Y is a counter-example which proves X is NOT a sufficient condition.
The 1.010010001… example is literally one that is taught in classes to disprove OPs exact hypothesis. This isn’t a discussion where we’re both offering different perspectives and working towards a truth we don’t both see, thus is a discussion where you’re factually wrong and I’m trying to help you learn why lol.
Is the 1.0010101 just another sequence with similar properties? And this sequence with similar properties just behaves differently than pi.
Others mentioned a zoo and a penguin. If you say that a zoo will contain a penguin, and then take one that doesn’t, then obviously it will not contain a penguin. If you take a sequence that only consists of 0 and 1 and it doesn’t contain a 2, then it obviously won’t.
But I find the example confusing to take pi, transform it and then say “yeah, this transformed pi doesn’t have it anymore, so obviously pi doesn’t” If I take all the 2s out of pi, then it will obviously not contain any 2 anymore, but it will also not be really be pi anymore, but just another sequence of infinite length and non repeating.
So, while it is true that the two properties do not necessarily lead to this behavior. The example of transforming pi to something is more confusing than helping.
The original question was not exactly about pi in base ten. It was about infinite non-repeating numbers. The comment answered the question by providing a counterexample to the proffered claim. It was perfectly good math.
You have switched focus to a different question. And that is fine, but please recognize that you have done so. See other comment threads for more information about pi itself.
We need to start teaching formal logic in grade schools I’m going insane.
Let’s abstract this.
S = an arbitrary string of numbers
X = is infinite
Y = is non-repeating
Z = contains every possible sequence of finite digits
Now your statements become: