You’re confusing 50% lethal dose (medical property of a substance in relation to the body) with death rate (property of a death cause, obtained statistically from a population at a specific time). This is pure medical data which still may be slightly inaccurate, but you can easily check relevant scientific papers for their estimate of the LD₅₀. I think all values presented here are correct within a factor of 2, unless you find a reputable journal stating a very different result. Each substance is available in different concentrations and humans’ exposure to them also varies. You can get lots of pure water, sugar or gasoline easily but not a gram of viruses. Nobody would voluntarily consume a substantial amount of gasoline but nanograms of viruses come and go in the air all the time.
It is somewhat misleading to group poisons, radioactive isotopes and viruses as they work in very different ways, but the gist is correct. And yes, the LD₅₀ is still a statistical estimate dependent on the humans studied, but not on society etc. like the death rate.
Edit: some substances will be ejected by the body relatively fast (water), some bioaccumulate (heavy metals) and some “biomutiply” (viruses). This is why you haven’t died despite having drunk lots of water.
It is somewhat misleading to group poisons, radioactive isotopes and viruses
Far as I can tell there aren’t any viruses in there? There’s a few bacterial toxins, but they’re… well, toxins.
Also, the grouping isn’t misleading. Not only is eg. plutonium fairly toxic (because it’s a heavy metal) in addition to giving off ionizing radiation, but calculating an LD50 for something doesn’t require it to be toxic, just that some dose of it kills. There’s some µg/kg ingested (or inhaled or whatever) dose of polonium that will kill 50% of a study animal population dead, regardless of what the mechanism that kills them actually is
You’re confusing 50% lethal dose (medical property of a substance in relation to the body) with death rate (property of a death cause, obtained statistically from a population at a specific time). This is pure medical data which still may be slightly inaccurate, but you can easily check relevant scientific papers for their estimate of the LD₅₀. I think all values presented here are correct within a factor of 2, unless you find a reputable journal stating a very different result. Each substance is available in different concentrations and humans’ exposure to them also varies. You can get lots of pure water, sugar or gasoline easily but not a gram of viruses. Nobody would voluntarily consume a substantial amount of gasoline but nanograms of viruses come and go in the air all the time.
It is somewhat misleading to group poisons, radioactive isotopes and viruses as they work in very different ways, but the gist is correct. And yes, the LD₅₀ is still a statistical estimate dependent on the humans studied, but not on society etc. like the death rate.
Edit: some substances will be ejected by the body relatively fast (water), some bioaccumulate (heavy metals) and some “biomutiply” (viruses). This is why you haven’t died despite having drunk lots of water.
Far as I can tell there aren’t any viruses in there? There’s a few bacterial toxins, but they’re… well, toxins.
Also, the grouping isn’t misleading. Not only is eg. plutonium fairly toxic (because it’s a heavy metal) in addition to giving off ionizing radiation, but calculating an LD50 for something doesn’t require it to be toxic, just that some dose of it kills. There’s some µg/kg ingested (or inhaled or whatever) dose of polonium that will kill 50% of a study animal population dead, regardless of what the mechanism that kills them actually is