Drones currently outpace their countermeasurs. This will definitely not be a thing forever. I think the effectiveness of cheap drones will go down as be countermeasures are invented.
We already see new very effective military drone jammers starting to come out
Onboard AI guidance is not difficult.
Yes it is.
Both of you are right.
It’s difficult, but how difficult depends on the task you set. If the task is “maintain manually initiated target lock on a clearly defined object on an empty field, despite the communications link breaking for 10 seconds” -> it is “give a team of coders half a year” difficult. It’s been solved before, the solution just needs re-inventing and porting to a different platform.
If it’s “identify whether an object is military, whether it is frienly or hostile, consider if it’s worth attacking, and attack a camouflaged target in a dense forest”, then it’s currently not worth trying.
The only reliable counter to a drone is likely another drone.
I suspect Peter F Hamilton got it close, in the Confederation series, with WASPs. They are space based weapon platforms. They carry a mix of offensive and defensive subsystems, and operate with swarm logic.
I could easily see a larger drone carrying a swarm of 1 shot micro drones. When close, some would be sacrificed to get better sensor data, others would go on the attack. Conversely, a defensive target would launch their own swarm. It’s goal would be to stop the attackers getting a good shot on a high value target. It might also counterattack, either against the mother ship drone, or backtracking to find the launch site.
Jamming would also be part of this. A jammer could easily cut off the swarm from external data sources. Live satellite or remote surveillance systems would be cut. Point to point lasers are far harder, as are burst transmissions. Local sensor drones could easily punch short range data back, or paint targets, until they are destroyed by defensive systems.
https://www.youtube.com/watch?v=rr7ym1zkda8
Anti-air guns are the countermeasure. RADAR good enough to detect drones + an aimbot and programmable air-burst round to “shotgun” your pellets to damage those soft plastic bits.
We’re going back to WW2 tech. AA guns were considered obsolete because Helicopters + Missiles had more range. But now we need to build cheaper AA Guns for the anti-drone role.
AA Guns are also useful vs infantry, so in an infantry vs infantry fight, having an AA Gun platform will be useful even without any drones around. Airburst and rapid fire is always useful, and I expect the computers that make RADAR possible will be far cheaper today than decades past.
They may both have a role.
If you know that a given point is at risk of attack, using a static defense like AA guns is practical. Say you have some sort of specific, high-value target that you can put AA guns around. That may be a very sensible thing to do.
But the problem, if you intend to rely only on those, is that there is then a concentration of force issue. The attacker can choose which point to attack; they get the initiative.
Say you’re trying to defend against something like a Shahed-136. It can hit pretty much anywhere in Ukraine. You can’t stick an AA gun on everything that Russia might consider trading a Shahed-136 for.
But, okay, say you try to go big with static defenses. Let’s say that you can obtain and pony up the resources to hypothetically stick an AA gun at every single point along the front line and border, and that your AA gun has the altitude to hit a drone. You have an unbroken line of engagement envelope all around a country. That’d be an extraordinary expenditure, but it could hypothetically be done. So a drone has to fly through defended airspace. The problem is that if the other guy expends an equivalent amount of resources, he can buy a shit-ton of drones and fly them all through a single gun’s engagement envelope. Even if he doesn’t even bother to try to attack the antiaircraft gun, your gun defenses are just going to get overwhelmed, because all of the attacker’s resources are engaged, whereas the vast bulk of the defender’s resources are not in the fight. Maybe you hit a tiny percentage of drones, but the rest are going to be able to simply fly through.
The problem is that the cost of static defenses in that scenario grows at something like the square of the scale of the air conflict – you have to have enough static defenses to counter all of the attacker’s aircraft, and pre-place those defenses at all points that might be attacked, whereas the cost of the attack grows only linearly. It’s cost-effective to use static defenses only if the attacker is compelled to attack a limited number of points.
If that’s not the case, then using some form of mobile defense is more important – say, I don’t know, you have a fleet of gun-armed, jet-powered counter-UAS UASes. Dollar-for-dollar, they might not be as effective as a static gun. But…you can route most or all of them in to meet any given attack.
The spot where we intend to fight must not be made known; for then the enemy will have to prepare against a possible attack at several different points; and his forces being thus distributed in many directions, the numbers we shall have to face at any given point will be proportionately few.
For should the enemy strengthen his van, he will weaken his rear; should he strengthen his rear, he will weaken his van; should he strengthen his left, he will weaken his right; should he strengthen his right, he will weaken his left. If he sends reinforcements everywhere, he will everywhere be weak.
Numerical weakness comes from having to prepare against possible attacks; numerical strength, from compelling our adversary to make these preparations against us.
Knowing the place and the time of the coming battle, we may concentrate from the greatest distances in order to fight.
But if neither time nor place be known, then the left wing will be impotent to succor the right, the right equally impotent to succor the left, the van unable to relieve the rear, or the rear to support the van. How much more so if the furthest portions of the army are anything under a hundred LI apart, and even the nearest are separated by several LI!
– Sun Tzu, The Art of War, ~400 BC
Say you’re trying to defend against something like a Shahed-136. It can hit pretty much anywhere in Ukraine. You can’t stick an AA gun on everything that Russia might consider trading a Shahed-136 for.
As far as I know, the routine in the current war is - the AA gun is on a truck that moves 80 km/h, the drone comes in slower than 300 km/h, one or multiple truck crews position themselves on likely vantage points for intercepting, and the rest is luck.
The wars of the future will not be fought on the battlefield or at sea. They will be fought in space, or possibly on top of a very tall mountain. In either case, most of the actual fighting will be done by small robots. And as you go forth today remember always your duty is clear: To build and maintain those robots.
Perhaps instead we could just restructure our epistemically confabulated reality in a way that doesn’t inevitably lead to unnecessary conflict due to diverging models that haven’t grown the necessary priors to peacefully allow comprehension and the ability exist simultaneously.
breath
We are finally coming to comprehend how our brains work, and how intelligent systems generally work at any scale, in any ecosystem. Subconsciously enacted social systems included.
We’re seeing developments that make me extremely optimistic, even if everything else is currently on fire. We just need a few more years without self focused turds blowing up the world.
most of the actual fighting will be done by small robots.
Drones aren’t being used to kill other drones, they are being used to drop bombs on people